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Abstract

Use of model-checking approaches for test generation
from requirement models have been proposed by several
researchers. These approaches leverage the witness (or
counter-example) generation capability of model-checkers
for constructing test cases. Test criteria are expressed
as temporal properties. Witness traces generated for
these properties are instantiated to create complete test se-
quences, satisfying the criteria. State-space explosion can,
however, adversely impact model-checking and hence such
test generation. Thus, there is a need to validate these ap-
proaches against realistic industrial sized system models to
learn how well these approaches scale. To this end, we con-
ducted a case study using six models of progressively in-
creasing complexity of the mode-logic in a flight-guidance
system, written in the RSML−e language. We developed a
framework for specification-based test generation using the
NuSMV model-checker and code based test case generation
using Java Pathfinder, and collected time and resource us-
age data for generating test cases using symbolic, bounded,
and explicit state model-checking algorithms. This paper
briefly discusses the approach, presents the results from the
study and analyzes its implications.

1. Introduction

Software development for high assurance systems, such
as the software controlling aeronautics applications and
medical devices, is a costly and time consuming process. In
such projects, the validation and verification phase (V&V)
consume approximately 50%–70% of the software devel-
opment resources. Thus, automatic generation of test cases
from requirement specifications has found considerable in-
terest in the research community. Such automation could
result in dramatic time and cost savings, especially for ver-
ifying safety-critical systems.

Model checking techniques have been proposed as one
method of achieving this automation [3, 9, 2, 10, 20, 16].
These proposed test case generation approaches leverage

the witness (or counter-example) generation capability of
model-checkers for constructing test cases. Test criteria are
expressed as temporal properties. Witness traces generated
for these properties are instantiated to create complete test
sequences, satisfying the criteria. Nevertheless, one of the
issues that often stymies model-checking is the state-space
explosion problem. As the size of the state-space to be ex-
plored increases, model-checking might become too time-
consuming or infeasible. But in the context of test genera-
tion based on structural properties, one is interested in fal-
sifying properties so that counter-examples can be instan-
tiated to test sequences. We have hypothesized that find-
ing violations of the properties characterizing a test case is
easy and that the counter-examples can be constructed eas-
ily even for large models.

While these ideas are appealing there is a need to val-
idate the approach using realistic models of critical sys-
tems. To this end, we conducted a case study using
six models of progressively increasing complexity of the
mode-logic in a flight-guidance system, written in the
RSML−e language [22, 23]. We developed a framework for
specification-based test generation using the NuSMV [19]
model-checker and code based test case generation using
Java Pathfinder [25] and collected time and resource us-
age data for generating test cases using symbolic, bounded,
and explicit state model-checking algorithms. The purpose
of this study was to determine if a model-checking based
approach to test generation could scale to software system
models of industrial size and complexity. Further, we were
also interested in applying a bounded search of the state-
space and see if this improved the performance without ad-
versely affecting the test generation capability.

To summarize our findings, our case study points out
limitations of symbolic as well as explicit state model
checkers when used for test case generation. A bounded
model checker, however, performed very well in our appli-
cation domain and shows tremendous promise.

The rest of the paper is organized as follows. Section 2
provides a short overview of related efforts in the area of
test-generation using model checking techniques and briefly
describes our overall approach. We describe how we con-
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ducted our case study in Section 3, and present the FGS
case example in Section 4. Sections 5 and 6 briefly discuss
RSML−e and the test coverage criteria used for this study.
Section 7 analyzes the results obtained and finally Section 9
discusses the implications of the results and points to future
studies and experiments that are further required to validate
model-checking based test generation approaches.

2. Finding Tests with a Model Checker

Model checkers build a finite state transition system and
exhaustively explore the reachable state space searching for
violations of the properties under investigation [8]. Should a
property violation be detected, the model checker will pro-
duce a counter-example illustrating how this violation can
take place. In short, a counter-example is a sequence of in-
puts that will take the finite state model from its initial state
to a state where the violation occurs.

A model checker can be used to find test cases by for-
mulating a test criterion as a verification condition for the
model checker. For example, we may want to test a tran-
sition (guarded with condition C) between states A and B
in the formal model. We can formulate a condition describ-
ing a test case testing this transition—the sequence of in-
puts must take the model to state A; in state A, C must be
true, and the next state must be B. This is a property ex-
pressible in the logics used in common model checkers, for
example, the logic LTL. We can now challenge the model
checker to find a way of getting to such a state by negat-
ing the property (saying that we assert that there is no such
input sequence) and start verification. The model checker
will now search for a counterexample demonstrating that
this property is, in fact, satisfiable; such a counterexample
constitutes a test case that will exercise the transition of in-
terest. By repeating this process for each transition in the
formal model, we use the model checker to automatically
derive test sequences that will give us transition coverage of
the model. The proposed test generation process is outlined
in Figure 1. Naturally, the same thinking can be applied to
the generation of test cases from source code, for example,
from Java as we will illustrate later in the paper.

Several research groups are actively pursuing model
checking techniques as a means for test case generation.

Gargantini and Heitmeyer [10] describe a method for
generating test sequences from requirements specified in
the SCR notation. To derive a test sequence, a trap prop-
erty is defined which violates some known property of the
specification. In their work, they define trap properties that
exercise each case in the event and condition tables avail-
able in SCR—this provides a notion of branch coverage of
an SCR specification.

Ammann and Black [2, 1] combine mutation analysis
with model-checking based test case generation. They de-

fine a specification based coverage metric for test suites us-
ing the ratio of the number of mutants killed by the test
suite to the total number of mutants. Their test genera-
tion approach uses a model-checker to generate mutation
adequate test suites. The mutants are produced by system-
atically applying mutation operators to both the properties
specifications and the operational specification, producing
respectively, both positive test cases which a correct im-
plementation should pass, and negative test cases which a
correct implementation should fail.

Rayadurgam, et al. in [20] provide a formalism suitable
for structural test-case generation using model checkers and
in [21] illustrate how this approach can be applied to a for-
mal specification language. They also presented a frame-
work for specification centered testing in [13].

Lee, et al. [16] formulate a theoretical framework for us-
ing temporal logic to specify data flow test coverage criteria.
They also discuss various techniques for reducing the size
of the test set generated by the model checker [15]. The
underlying argument in all these works, as in our own ear-
lier work, is that when test criteria can be appropriately for-
mulated as temporal logic formulas, one could use model-
checking to produce witnesses for those formulas, which
could then be seen as test sequences satisfying the coverage
criteria.

However, to our knowledge, not much experimental data
is available about the efficacy of model-checking based test-
generation for realistic systems. Our goal is to conduct a se-
ries of studies using realistic systems, apply the techniques
and examine how well these techniques perform and to what
extent they scale up.

3. Case Study Overview

In our case study, we were interested in answering four
questions:

1. If we naively generate one test case for each structure
we want to cover, how many test cases will be gener-
ated for various coverage criteria?

2. Does test case generation using symbolic and bounded
model checking scale to realistic systems?

3. Where do the test case generation capabilities of sym-
bolic and bounded model checking break down?

4. Can a code model checker, such as JPF, be used to find
test cases based on realistic code?

To answer these questions, we devised a rigorous case study
evaluating the test case generation capabilities of model
checkers. We have developed a test case generation engine
integrated in our NIMBUS toolset for the development of
RSML−e specifications [22] (described in Section 5). This
test case generator allows us to generate test cases to var-
ious structural coverage criteria using the NuSMV model
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Figure 1. Test sequence generation overview and architecture.

checker. The coverage criteria we have used in this study
are discussed in Section 6.

To stress the capabilities of NuSMV, we wanted to work
with models with realistic structure as well as realistic size.
In a related project, Rockwell Collins Inc., in collaboration
with the University of Minnesota, have developed a collec-
tion of progressively more complex RSML−e models of the
mode logic of a flight guidance system (FGS). The models
range from a very simple ”toy-version” of the FGS (FGS00)
to a close to production version of the logic (FGS05). The
case example is discussed in some detail in Section 4.

We performed the case study by conducting the follow-
ing steps:

1. Use NIMBUS to automatically generate LTL trap prop-
erties for various coverage criteria for FGS00 through
FGS05.

2. Use the symbolic as well as bounded model checkers
provided in NuSMV to generate counterexamples for
the suites of trap properties.

3. Automatically process the counterexamples to provide
test cases suitable for use in a test automation environ-
ment.

During the case study, we collected information on (1) how
many test cases were generated, (2) run time and memory
usage of the model checkers, and (3) the average length of
the test cases generated.

To complete the case study, we investigated the feasi-
bility of using a code model checker to complete the test
suites derived from the formal specification. This capability
would be used should the specification-based tests not pro-
vide adequate coverage of the implementation. To this end,
we derived Java code from the formal specifications, exe-
cuted a test suite generated from the specification, identified
branches that were not covered, and derived tests for these
branches using Java Pathfinder Java model checker [25].

In the remainder of this paper we provide a detailed de-
scription of the artifacts and activities involved in the case
study.

Figure 2. Flight Guidance System

4. Flight Guidance System

A Flight Guidance System (FGS) is a component of the
overall Flight Control System (FCS) in a commercial air-
craft. It compares the measured state of an aircraft (position,
speed, and altitude) to the desired state and generate pitch
and roll guidance commands to minimize the difference be-
tween the measured and desired state1. The FGS can be

1We thank Dr. Steve Miller and Dr. Alan Tribble of Rockwell Collins
Inc. for the information on flight control systems and for letting us use the
RSML−e models they have developed using NIMBUS.
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broken down to mode logic, which determines which lat-
eral and vertical modes of operation are active and armed
at any given time, and the flight control laws that accept in-
formation about the aircraft’s current and desired state and
compute the pitch and roll guidance commands. In this case
study we have used the mode logic.

Figure 2 illustrates a graphical view of a FGS in the
NIMBUS environment. The primary modes of interest in
the FGS are the horizontal and vertical modes. The hori-
zontal modes control the behavior of the aircraft about the
longitudinal, or roll, axis, while the vertical modes control
the behavior of the aircraft about the vertical, or pitch, axis.
In addition, there are a number of auxiliary modes, such as
half-bank mode, that control other aspects of the aircraft’s
behavior.

The FGS is ideally suited for test case generation using
model checkers since it is discrete—the mode logic con-
sists entirely of enumerated and Boolean variables. As men-
tioned earlier, we used six models that are of progressively
increasing complexity. An indication of the model size can
be found in Table 1.

5. NIMBUS and RSML−e

Figure 3 shows an overview of the NIMBUS tools frame-
work we have used as a basis for our test case generation
engine. The user builds a behavioral model of the sys-
tem in the fully formal and executable specification lan-
guage RSML−e (see below). After evaluating the function-
ality and behavioral correctness of the specification using
the NIMBUS simulator, users can translate the specifications
to the PVS or NuSMV input languages for verification (or
test case generation as is the case in this report). The set
of LTL trap properties required to use NuSMV to generate
test sequences are obtained by traversing the abstract syn-
tax tree in NIMBUS and then outputting sets of properties
whose counterexamples will provide the correct coverage
(the coverage criteria an associated properties are discussed
in the next section).

To generate test cases in NIMBUS, the user would invoke
the following steps:

Model creation and trap property generation: The for-
mal model in NuSMV can be generated automati-
cally from the RSML−e specification from the NIM-
BUS command line. The test criterion is specified as
a command line argument when building the NuSMV
model. The result of this command is an SMV model
of the system and a collection of trap properties whose
counterexamples will provide the desired coverage.

Counterexample generation using NuSMV:The model
and the trap properties are merged and given to the
NuSMV tool. A Unix script invokes the NuSMV tool

RSML-e Simulator

Translator

Test Case
Generator

Proof Strategy

PVS Input
Language

Property
Specification

NuSMV Input
Language

Trap Properties

PVS

NuSMV

Verification
Result

User

Figure 3. Verification Framework.

in interactive mode, reads the model, flattens the hi-
erarchy, encodes the variables, and checks the speci-
fications for the trap properties. After completing the
script, we have collected the counter example traces
for all trap properties in a text file.

Concrete test case generation from NuSMV Output:
For any counterexample, the trace information from
NuSMV contains only delta changes in each subse-
quent state following the initial state. Therefore, to
generate test sequences, we need to remember the
value of the variables in the initial state configuration
so that we can construct usable test cases by applying
the delta changes to the initial configuration. The
processing of the counterexamples and generation
of an intermediate test representation is currently
achieved with a simple piece of software implemented
in C. The intermediate test representation contains (1)
the input in each step, (2) the expected state changes
(to state variables internal to the RSML−e model), and
(3) the expected outputs (if any).

The NIMBUS tools discussed above all operate on
the RSML−e notation—RSML−e is based on the State-
charts [12] like language Requirements State Machine Lan-
guage (RSML) [18]. RSML−e is a fully formal and syn-
chronous data-flow language without any internal broadcast
events (the absence of events is indicated by the −e).

An RSML−e specification consists of a collection of in-
put variables, state variables, input/output interfaces, func-
tions, macros, and constants; input variables are used to
record the values observed in the environment, state vari-
ables are organized in a hierarchical fashion and are used to
model various states of the control model, interfaces act as
communication gateways to the external environment, and
functions and macros encapsulate computations providing
increased readability and ease of use.

Figure 4 shows a specification fragment of an RSML−e
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RSML SMV RSML SMV RSML SMV RSML SMV RSML SMV RSML SMV

#lines of code 287 423 455 639 774 1045 1034 1186 1781 2052 2564 2902

#vars/BDD’s 19 109 27 167 43 281 57 353 90 615 142 849

         FGS04         FGS05         FGS00          FGS01           FGS02          FGS03

Table 1. Data on the size of the RSML−eand SMV FGS models.

STATE_VARIABLE ROLL : Base_State
PARENT : Modes.On
INITIAL_VALUE : UNDEFINED
CLASSIFICATION : State

TRANSITION UNDEFINED TO Cleared IF NOT Select_ROLL()
TRANSITION UNDEFINED TO Selected IF Select_ROLL()
TRANSITION Cleared TO Selected IF Select_ROLL()
TRANSITION Selected TO Cleared IF Deselect_ROLL()

END STATE_VARIABLE

MACRO Select_ROLL() :
TABLE

Is_No_Nonbasic_Lateral_Mode_Active() : T;
Modes = On : T;

END TABLE
END MACRO

MACRO Deselect_ROLL() :
TABLE

When_Nonbasic_Lateral_Mode_Activated() : T *;
When(Modes = Off) : * T;

END TABLE
END MACRO

Figure 4. A small portion of the FGS specifi-
cation in RSML−e.

specification of the Flight Guidance System2. The figure
shows the definition of a state variable, ROLL. ROLL is the
default lateral mode in the FGS mode logic.

The conditions under which the state variable changes
value are defined in the TRANSITION clauses in the def-
inition. The condition tables are encoded in the macros,
Select ROLL and Deselect ROLL. The use of macros
not only improve the readability of the specifications but
also help localize errors and future changes. The tables are
adopted from the original RSML notation–each column of
truth values represents a conjunction of the propositions in
the leftmost column (a ‘*’ represents a ”don’t care” con-
dition). If a table contains several columns, we take the
disjunction of the columns; thus, the table is a way of ex-
pressing conditions in a disjunctive normal form.

6. Coverage Criteria

For the case study described in this report, we have se-
lected to use three representative specification coverage cri-
teria; state coverage, decision coverage (in the RSML−e

2We use here the ASCII version of RSML−e since it is much more
compact than the more readable typeset version.

context called table coverage), and a version of MC/DC
coverage [4] called clause-wise condition coverage.

In the following discussion, a test case is to be under-
stood as a sequence of values for the input variables in an
RSML−e specification. This sequence of inputs will guide
the RSML−e specification from its initial state to the struc-
tural element, for example, a transition, the test cases was
designed to cover. A test suite is simply a set of such test
cases. As we briefly explained, trap properties are used to
generate counter-examples using a model checker. These
properties are derived from the structural coverage criteria.
For the purposes of illustration, we use the FGS example
discussed in Section 4.

State coverage:

Definition 1. A test suite is said to achieve state coverage
of a state variable in an RSML−e specification, if for each
possible value of the state variable there is at least one test
case in the test suite that assigns that value to the given
variable. The test suite achieves state coverage of the spec-
ification if it achieves state coverage for each state variable.

Consider, for example, the state variable ROLL in the
FGS specification example:

STATE_VARIABLE ROLL : { Cleared, Selected, UNDEFINED };

A test suite would achieve state coverage on ROLL, if for
each of its three different possible values, there is a test case
in which ROLL takes that value. Note that a single test case
might actually achieve this coverage by assigning different
values to ROLL at different points in the sequence. To pro-
vide a comprehensive test suite, however, in this case study
we generate one test case for each state variable value. One
could use the following LTL formulas to generate the test
cases:

1. G ˜(ROLL = Cleared)
2. G ˜(ROLL = Selected)
3. G ˜(ROLL = UNDEFINED)

In each case, the property asserts that ROLL can never
have a specific value and the counter-example produced is
a sequence of values for the system variables starting from
an initial state and ending in a state where ROLL has the
specific value.
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Decision coverage (table coverage):

Definition 2. A test suite is said to achieve decision cover-
age of a given RSML−e specification, if each guard condi-
tion (specified as either an AND/OR table or as a standard
Boolean expression) evaluates to true at some point in some
test case and evaluates to false at some point in some other
test case in the test suite.

We also refer to this coverage criterion as table coverage
since AND/OR tables typically are used for every decision
in RSML−e. As an example, consider the transition defined
for the ROLL state variable in Figure 4.

If we consider the transition from Cleared to
Selected guarded by the condition encapsulated in the
Select ROLL(), test cases to provide decision coverage of
this transition can be generated using the following two trap
properties.

1. G((Select_ROLL()) -> ˜(ROLL = Selected))
2. G(˜(Select_ROLL()) -> (ROLL = Selected))

Clause-wise transition coverage: Finally, to exercise the
approach with a complex test coverage criterion, we look
at the code based coverage criterion called modified condi-
tion/decision coverage (MC/DC) and define a similar crite-
rion. MC/DC was developed to meet the need for extensive
testing of complex boolean expressions in safety-critical ap-
plications [4]. Ideally, one should test every possible com-
bination of values for the conditions, thus achieving com-
pound condition coverage. Nevertheless, the number of test
cases required to achieve this grows exponentially with the
number of conditions and hence becomes huge or imprac-
tical for systems with tens of conditions per decision point.
MC/DC was developed as a practical and reasonable com-
promise between decision coverage and compound condi-
tion coverage. It has been in use for several years in the
commercial avionics industry. A test suite is said to sat-
isfy MC/DC if executing the test cases in the test suite will
guarantee that:

• every point of entry and exit in the program has been
invoked at least once,

• every basic condition in a decision in the program has
taken on all possible outcomes at least once, and

• each basic condition has been shown to independently
affect the decision’s outcome

where a basic condition is an atomic Boolean valued expres-
sion that cannot be broken into Boolean sub-expressions.
A basic condition is shown to independently affect a deci-
sion’s outcome by varying only that condition while hold-
ing all other conditions at that decision point fixed. Thus, a
pair of test cases must exist for each basic condition in the
test-suite to satisfy MC/DC. However, test case pairs for dif-
ferent basic conditions need not necessarily be disjoint. In

fact, the size of MC/DC adequate test-suite can be as small
as N + 1 for a decision point with N conditions.

If we think of the system as a realization of the specified
transition relation, it evaluates each guard on each transition
to determine which transitions are enabled and thus each
guard becomes a decision point. The predicates in turn are
constructed from clauses—the basic conditions.

Definition 3. A test suite is said to achieve clause-wise
transition coverage (CTC) for a given transition of a vari-
able in an RSML−e specification, if every basic Boolean
condition in the transition guard is shown to independently
affect the transition.

Consider the following transition example adopted from
an avionics system related to the FGS:

EQUALS PowerOn IF
TABLE
PREV_STEP(DOI) IN_STATE AttemptingOn : F T;
PREV_STEP(DOI) IN_ONE_OF {PowerOff, Unknown}: T F;
DOIStatus = On : T T;
AltitudeStatus IN_STATE Below : T *;
ivReset : F F;

END TABLE

To show that each of the basic conditions in the rows in-
dependently affects the transition, one should produce a set
of test cases in which for any given basic condition there are
two test cases, such that one makes the basic condition true
and the other makes it false, the rest of the basic conditions
have the same truth values in both test cases, and in one test
case the transition is taken while in the other it is not. For
the purposes of this example, let us just consider the first
column. We may generate the trap properties by examining
the truth value for each row in the first column as follows:

0. G((˜R1 & R2 & R3 & R4 &˜R5) -> ˜(POST);
1. G(( R1 & R2 & R3 & R4 &˜R5) -> POST);
2. G((˜R1 &˜R2 & R3 & R4 &˜R5) -> POST);
3. G((˜R1 & R2 &˜R3 & R4 &˜R5) -> POST);
4. G((˜R1 & R2 & R3 &˜R4 &˜R5) -> POST);
5. G((˜R1 & R2 & R3 & R4 & R5) -> POST);

where Ri stands for the basic condition in the ith row of
the table and POST represents the post-state condition DOI

= PowerOn.
MC/DC test cases come in pairs, one where the atomic

condition evaluates to false and one where it evaluates to
true, but no other atomic conditions in the Boolean expres-
sion are changed. In the example above, trap properties 0
and 1 provide coverage of R1. Unfortunately, the model
checking approach to test case generation is incapable of
capturing such constraints over two test sequences. To work
around this problem, we have developed a novel alterna-
tive that leverages a model checker for complete and accu-
rate MC/DC test case generation. We automatically rewrite
the system model by introducing a small number of aux-
iliary variables to capture the constraints that span more
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FGS00 FGS01 FGS02 FGS03 FGS04 FGS05
State Coverage 33 54 78 99 117 246
Table Coverage 40 68 98 136 196 342
MCDC 
Coverage

32 54 77 118 205 323

Table 2. Trap Properties generated per test
criterion for all FGS Models

than one test-sequence. We also introduce a special sys-
tem reset transition to restore a system to its initial state.
With these small modifications, a test constraint spanning
two sequences in the original model can be expressed as a
constraint on a single test-sequence in the modified model.
Model-checking techniques can then be employed to gen-
erate this single test sequence which can be later factored
into two separate test-sequences for the original model sat-
isfying the actual test criteria. This process has been fully
automated, and used to generate the MC/DC like tests in
this case study.

To summarize, we have automated the generations of
trap properties for a collection of structural coverage criteria
of formal specifications. In this case study we are using the
three representative criteria described above; state coverage,
decision coverage , and claus-wise condition coverage. The
experiential results of using model checkers to generate test
suites to these coverage criteria are presented next.

7. Experimental Results and Discussion

The results of our case study are presented in Tables 2
through 4. Table 2 provides a count of the number of trap
properties generated for each FGS model for each coverage
criterion. Note that this number reflects the naive genera-
tion of trap properties—we simply generate one trap prop-
erty for each structural element we aim to cover. Naturally,
the desired coverage can typically be achieved with substan-
tially fewer test cases—see discussion later in this section.
Recall, however, that the aim of this case study was not to
provide a minimal set of test cases providing the desired
coverage, but instead to evaluate the scalability of using
model checking techniques for test case generation—thus,
we wanted to work with many properties to make our re-
sults representative of expected performance. Finally, note
that each trap property for MC/DC coverage describes an
MC/DC pair of test cases—we will have twice as many
MC/DC test cases as we have trap properties.

Table 3 gives the performance figures in terms of time
and memory of generating the suites to the three coverage
criteria (a - in the table indicates that a run of the model
checker was terminated after an excessively long run—
more that 24 hours).

As the data in Table 3 illustrates, symbolic model check-
ing does not seem to scale well beyond FGS03. For models
FGS04 and FGS05, it quickly runs into problems. From Ta-
ble 3 it is clear that memory usage is not the problem. To
keep memory usage small, we are using the dynamic BDD
variable reordering feature of NuSMV—without this option,
NuSMV would exhaust the available memory quickly. Nev-
ertheless, the dynamic variable reordering is quite costly
and this deteriorates the performance of NuSMV to a point
where the time to reorder becomes unbearable. In addi-
tion, the cost of constructing counterexamples in a symbolic
model checker becomes a serious issue when the model
checker is used for test case generation since we need a
large number of counterexamples.

The bounded model checker, on the other hand, scales
well to all FGS Models. To determine the search depth for
the bounded model checker, we used results from a previous
study using symbolic model checking for verification of the
FGS system models [5]. In this previous study, we found
that the full state space of FGS00 through FGS03 could
be explored with 5 steps and with 12 steps in FGS04 and
FGS05. Therefore, when generating state and table cov-
erage, we used the default setting of 10 steps for FGS00
through FGS03 and 12 for FGS04 and 05. We attempted
the same settings when generating MC/DC coverage, but
the time required to search to this depth was simply un-
acceptable. Note here that the majority of the time was
spent searching for test cases that are infeasible—a certain
MC/DC pair did not exist. Searching to depth 12 for such
non-existent test cases is counterproductive. Instead, we ob-
served that the average test case length is quite short (Ta-
ble 4 shows just a little over 2 for table coverage) and we
simply set the the search depth to a prudent 5. We expected
this to assure that we found a large number of test cases, but
did not waste any time searching for the ones that did not
exist. Naturally, we may still miss some test cases that are
longer than 5 should they exist (see discussion below).

As can be seen from the performance data for the
bounded model checker in Table 3, even with a reduced
search depth, the performance deteriorated quite notably
when generating tests for MC/DC coverage (orders of mag-
nitude slower than for the other coverage criteria). Two fac-
tors contribute to this phenomenon; (1) the length of the
test sequences generated and (2) the complexity of the LTL
properties to check.

Table 4 shows the average test case length we measured
during our experiments. From the results it is clear that the
test cases for MC/DC coverage were approximately twice as
long as the ones for the other coverage criteria. Recall the
short discussion on MC/DC in Section 6. The counterexam-
ple generated for an MC/DC trap property describes not one
test case, but an MC/DC test case pair—the first test case
takes a transition t out of state X with a particular truth as-
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Memory Time Memory Time Memory Time Memory Time Memory Time Memory
(MB) (s) MB 

(depth)  
(s) (MB) (s) MB 

(depth)
(s) (MB) (s) MB 

(depth)
FGS00 1.01 1 0.29 1 (10) 2.04 10 0.79 10 (10) 1.72 10 3.55 13 (5)
FGS01 4.58 11 0.61 11 (10) 7.3 15 2.14 14 (10) 6.72 15 11.4 19 (5)
FGS02 33.86 21 1.76 15 (10) 82.34 24 5.94 21 (10) 78.2 24 51.76 30 (5)
FGS03 251.37 27 3.74 19 (10) 469.91 33 11.99 29 (10) 520.95 32 137.34 49 (5)
FGS04 - - 57.89 32 (12) - - 101.2 53 (12) - - 39167.8 110 (5)
FGS05 - - 81.61 58 (12) - - 193.67 80 (12) - - 46196.91 165 (5)

Time    
(s)      

MCDC Coverage
          Symbolic         Bounded

State Coverage Table Coverage
         Symbolic         Bounded          Symbolic         Bounded

Table 3. Execution Times and Memory Usage for all FGS Models

signment to the basic conditions, the second takes us back
to state X but this time we have exactly one basic condi-
tion with a different truth assignment and we do not take
transition t. Thus, the test case length is destined to be ap-
proximately twice the length of the test cases generated for
the other criteria. The need for a deeper search dramatically
decreases the performance of the bounded model checker.

In addition to the increased test case length, the LTL
properties characterizing the test cases are significantly
more complex for MC/DC coverage than for the other cov-
erage criteria (again, see Section 6). The dramatically
longer trap properties negatively affects the performance of
the bounded model checker [24].

From this discussion we can conclude that a bounded
model checker seems to be a suitable tool for test case gen-
eration from formal specifications; it scales well to systems
of industrial relevance, it generates the shortest possible
test cases, and it is fully automated. There are, however,
some drawbacks. Most importantly, if the shortest test case
needed to cover a specific feature in the model is longer than
the search depth of the bounded model checker, we have no
way of telling if the test case simply does not exist or if it
is longer than the search depth. This is an issue particu-
larly for MC/DC generation where there are a fair number
of MC/DC pairs that simply do not exist—if the bounded
model checker fails to find a test case, the determination if
it indeed exists is now a manual process.

As mentioned previously, during the generation of the
test suites we did not attempt to minimize the number of
test cases to achieve a desired coverage. In fact, it is easy
to see that our test case generation approach, where a test
case is generated for each trap property, will lead to a large
amount of duplicate coverage.

We performed a simple analysis to measure the level
of duplication for the test suite generated to achieve table
coverage—we simply executed the tests (sequentially) and
kept track of the coverage achieved after each test. Most test

cases did not increase the coverage of the test suite—a clear
indication that tests are redundant with respect to achieving
coverage. Some tests, on the other hand, produced a “jump”
in the coverage indicating that they exercise a new portion
of the software. We created a reduced test suite using the
tests that caused this jump in the coverage. Although this is
not necessarily the minimal set to achieve the desired cov-
erage, we found the difference in size between the initial
set and this set to be such that it clearly indicated a large
degree of duplication over the generated tests. For exam-
ple we found that for FGS00 and FGS03 respectively, only
3 out of the 27, and, 11 out of 95 test cases were required
to achieve table coverage. Since the cost of resetting a sys-
tem and executing a new test case in some applications is
high, identifying a small test suite that provides adequate
coverage is of some importance. In future work we will in-
vestigate an iterative approach to the test case generation in
order to achieve smaller test suites. Of course, a smaller
test suite might achieve the same coverage, but it may re-
duce the defect detection capability of the test suite. We
have just initiated a study to investigate how test suite size
impacts the defect detection capability of the suite.

As mentioned in Section 2, we intended our test case
generation framework to allow an analyst to generate test
sequences from a formal specification and then run the tests
on the implementation. Should additional tests be needed,
we would like to generate the additional input sequences
from the code. To this effect we evaluated an explicit state
code model checker.

8. Java PathFinder Results

We have done some preliminary experiments on using
the Java PathFinder (JPF) code-level model checker [25] to
do test case generation on Java programs automatically gen-
erated from the RSML−e models. Our initial motivation for
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Symbolic Bounded Symbolic Bounded Symbolic Bounded
FGS00 2.8 1.5 5.6 2.2 9.0 3.5
FGS01 4.0 1.6 5.7 2.2 8.7 3.4
FGS02 5.3 1.5 6.3 2.2 9.1 3.9
FGS03 5.3 1.6 6.0 2.1 8.7 4.0
FGS04 - 1.7 - 2.2 - 3.9
FGS05 - 1.8 - 2.1 - 4.0

State Coverage Table Coverage MCDC Coverage

Table 4. The average length of the test cases generated.

using a code-level model checker was to investigate whether
one can use such a tool to discover test cases for covering
code that was not being covered by the test cases derived
from the RSML−e specification. Here however, since we
are doing an automatic translation of RSML−e to Java, we
will use our preliminary results to judge how an explicit-
state model checker (such as JPF) compares to the sym-
bolic and bounded model checker approaches for test case
generation for RSML−e. We studied test cases for branch
coverage at the Java level, since branch coverage is an of-
ten used code coverage criteria and, due to the translation
used, corresponds closely to table (decision) coverage at the
RSML−e level.

The test case generation process using JPF is currently
not automated, in particular, the trap properties are asser-
tions added by hand, and, there is no facility to extract the
test inputs from each counterexample produced. We there-
fore will not be reporting any specific timing and mem-
ory usage results, but rather make general observations.
In short, the explicit-state model checker did not perform
as well as the symbolic and bounded model checking ap-
proaches. For FGS00 the model checker could generate test
cases to cover all branches within a matter of seconds while
using an insignificant amount of memory (less than 1 Mb).
Whereas for FGS03, it could not generate enough of the
state-space to cover all the branches in a reasonable amount
of time (3 hours). We did not attempt to generate tests for
FGS04 or FGS05.

From the experiments it is clear that the explicit-state
model checking is particularly sensitive to the length of the
test cases required to achieve the desired coverage. For ex-
ample, FGS03 has 10 boolean inputs at each input cycle
(i.e., 210 options), and the explicit-state model checker can
at most deal with 3 such inputs (since the state space size
will be O(109)).

Explicit-state model checking does however allow more
control over the search, and we conjecture this can be ex-
ploited to do efficient test case generation. Specifically,
one can use heuristic search [11] techniques to find the de-
sired test cases—we will pursue this line of research in fu-
ture work. Recently, the idea of combining symbolic exe-
cution with model checking to do test case generation has

been proposed [17]—this allows one to mitigate the effect
of longer test cases and should therefore allow for more ef-
ficient test case generation. This latter approach is in some
ways similar to doing bounded model checking, and we will
investigate how these techniques compare in future work.

9. Summary and Conclusions

To summarize, we have conducted a series of case stud-
ies evaluating how well model checking techniques will
scale when used for test case generation. Our experiences
point out limitations of symbolic as well as explicit state
model checkers. A bounded model checker, however, per-
formed very well and shows tremendous promise. The do-
main of interest in our study has been safety critical reactive
systems—systems that lend themselves to modeling with
various formalisms based on finite state machines. In this
domain, test cases providing common coverage seem to be
quite short, thus making bounded model checkers perform
very well.

Naturally, there are still many challenges to address.
There are systems where the cost of restarting the system
to execute a new test sequence is quite high. In this sit-
uation it is highly desirable to have long test cases that
provides extensive coverage so that we can minimize the
number of system restarts required to execute the test suite.
The bounded model checking approach discussed perform-
ing well in our case study provides the exact opposite—we
will get many very short test cases. Techniques to effec-
tively merge these test cases to longer test sequences would
be highly desirable. Alternatively, techniques based on ex-
plicit state model checking and heuristic searches may be
able to provide long test cases that provides extensive cov-
erage of a model. We plan to investigate this approach in
the context of Java PathFinder shortly.

The nature of bounded model checking makes it unsuit-
able for verification. Determining the appropriate search
depth to grantee that we find most (if not all) test cases
without wasting time with deep searches for test cases do
not exist remains a challenge.

Our case study example is non-typical in that it only con-
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tains discrete variables, we have no integer or real variables
in the model. Naturally, many models will have numerous
numeric variables involved in various interrelated numeric
constraints. Applying the model checking techniques on
these systems will be a challenge. Recent advances bringing
efficient decision procedures and bounded model checking
together promises to help to some extend. Various abstrac-
tion techniques, for example, iterative refinement [14, 7]
and domain reduction abstraction [6], also holds promise
in this regard. We hope to conduct experiments on systems
with these characteristics shortly.
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